基于改进电阻抗技术的酵母菌细胞活性检测
作者:
作者单位:

1.江苏理工学院 机械学院,江苏 常州 213001;2.南京航空航天大学 机电学院,江苏 南京 210016

中图分类号:

Q503


Yeast cell activity detection based on improved electrical impedance technology
Author:
Affiliation:

1.College of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China;2.College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • | |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 为了使用神经网络快速预测并探究酵母菌细胞活性与电阻抗之间的关系。方法 选用电阻抗技术对不同浓度活性酵母菌细胞进行测试,获得死亡细胞的阻抗值。基于灰狼算法优化的BP神经网络的预测模型,探究酵母菌活性与电阻抗在不同频率下的关系。结果 酵母菌活性与电阻抗存在复杂的非线性关系,在一定频率下随着酵母菌细胞浓度的增加,酵母菌细胞悬浮液的电阻抗也随之增加。发现活性细胞在相对频率下的电阻抗要高于死亡细胞。基于灰狼算法优化的BP神经网络预测模型误差明显小于BP神经网络,且拟合值更加接近真实值。结论 该文所提方法能有效解决电阻抗与酵母菌活性的非线性关系,能够为电阻抗技术在细胞检测领域的应用提供参考。

    Abstract:

    Objective To rapidly predict and explore the relationship between yeast cell activity and impedance using neural networks.Methods The impedance values of dead yeast cells were obtained by testing yeast cells with different concentrations using impedance technology. A prediction model based on BP neural networks optimized by grey wolf algorithm was employed to explore the relationship between yeast cell activity and impedance at different frequencies.Results There existed a complex non-linear relationship between yeast cell activity and impedance, where the impedance of yeast cell suspension increased with the increase of yeast cell concentration at certain frequencies. It was observed that the impedance of active cells was higher than that of dead cells at relative frequencies. The error of the BP neural network prediction model optimized by the grey wolf algorithm was significantly smaller than that of the BP neural network, and the fitted values were closer to the actual values.Conclusions The methods proposed in this study effectively address the non-linear relationship between impedance and yeast cell activity, providing valuable insights for the application of impedance technology in the field of cell detection.

    图1 生物阻抗谱检测仪器Fig.1
    图2 悬浮液制备流程图Fig.2
    图3 酵母菌活性预测模型建模原理Fig.3
    图4 GWO-BP神经网络预测值和真实值对比图Fig.4
    图5 GWO-BP神经网络的测试样本的误差Fig.5
    图6 GWO-BP神经网络模型的适应度变化曲线Fig.6
    图7 GWO-BP神经网络预测值和真实值对比图Fig.7
    图8 不同浓度下阻抗幅值随激励频率的变化趋势Fig.8
    图9 活性细胞与死亡细胞阻抗幅值对比图Fig.9
    表 1 预测结果对比Table 1
    表 2 精度对照表 (%)Table 2
    参考文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王震宇,丁力,叶霞,姚佳烽.基于改进电阻抗技术的酵母菌细胞活性检测[J].中国医学工程,2024,(8):22-27

复制
分享
文章指标
  • 点击次数:6
  • 下载次数: 2
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-18
  • 在线发布日期: 2025-01-14
您是第10817位访问者
中国医学工程 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!
管理员登录